skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Deng, X"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Scan statistics is one of the most popular approaches for anomaly detection in spatial and network data. In practice, there are numerous sources of uncertainty in the observed data. However, most prior works have overlooked such uncertainty, which can affect the accuracy and inferences of such meth- ods. In this paper, we develop the first systematic approach to incorporating uncertainty in scan statistics. We study two formulations for robust scan statistics, one based on the sam- ple average approximation and the other using a max-min objective. We show that uncertainty significantly increases the computational complexity of these problems. Rigorous algorithms and efficient heuristics for both formulations are developed with justification of theoretical bounds. We evaluate our proposed methods on synthetic and real datasets, and we observe that our methods give significant improvement in the detection power as well as optimization objective, relative to a baseline. 
    more » « less